Optical properties of electron and hole-doped 122 iron-arsenic superconductors

Y.M.Dai1 ${ }^{2}$, R.P.S.M.Lobo ${ }^{1}$, A.Forget ${ }^{1}$, D.Colson ${ }^{1}$, B.Xu ${ }^{2}$, H.H.Wen ${ }^{2}$, X.G.Qiu ${ }^{2}$
${ }^{1}$ LPEM, UPMC, ESPCI-ParisTech, CNRS, 10 rue Vauquelin, F-75231 Paris Cedex 5, France
${ }^{2}$ National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

Superconductivity in the iron-arsenic compounds have various interesting aspects. One of the most distinguishing features of this family of superconductors is that a set of Fe $3 d$ bands are crossing the Fermi Level and can participate in the forming of the cooper pairs. Multiple superconducting gaps may exist in iron-arsenic superconductors.

We present optical conductivity measurements on the electron-doped 122 system $\mathrm{Ba}\left(\mathrm{Fe}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}}\right)_{2} \mathrm{As}_{2}$ and hole-doped 122 system $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{K}_{\mathrm{x}} \mathrm{Fe}_{2} \mathrm{As}_{2}$ single crystals. In both samples, a clear signature of the superconducting gap is observed when the temperature is below T_{c}, but a simple s-wave description fails in accounting for the low-frequency response. In the electron-doped sample $\mathrm{Ba}\left(\mathrm{Fe}_{1-\mathrm{x}} \mathrm{Co}_{\mathrm{x}}\right)_{2} \mathrm{As}_{2}$, the data and the model can be reconciled by introducing an additional Drude peak which accounts for the additional low energy absorption. In the hole-doped sample $\mathrm{Ba}_{1-\mathrm{x}} \mathrm{K}_{\mathrm{x}} \mathrm{Fe}_{2} \mathrm{As}_{2}$, the low-frequency optical response can be well described by introducing a second isotropic superconducting gap which is a strong evidence for the existence of multiple superconducting gaps in iron-arsenic superconductors.

